611 research outputs found

    Efficient design of a radome for minimised transmission loss

    Get PDF

    Dual-Layer Corrugated Plate Antenna

    Get PDF
    This letter presents a subwavelength slot-fed high-gain dual-layer corrugated plate antenna for X-band applications. The antenna is realized by placing a second corrugated layer that has three radiating slots on top of the traditional corrugated plate antenna. The addition of the second layer improves the gain and bandwidth of the proposed antenna. Compared to a traditional single-layer corrugated plate antenna, the proposed dual-layer antenna has higher gain, lower sidelobe level, narrower half-power beamwidth, and better impedance bandwidth. A prototype of the proposed antenna is built and tested, and the measured results show that the antenna has a peak gain of 16.3 dBi at 11.3 GHz. The gain of the proposed antenna has been improved by more than 4 dBi due to coupling more energy to the second layer's three slots. Finally, the operating principles of the proposed antenna are also discussed and analyzed thoroughly

    Enhanced 3D localisation accuracy of body-mounted miniature antennas using ultra-wideband technology in line-of-sight scenarios

    Get PDF
    This study presents experimental investigations on high-precision localisation methods of body-worn miniature antennas using ultra-wideband (UWB) technology in line-of-sight conditions. Time of arrival data fusion and peak detection techniques are implemented to estimate the three-dimensional (3D) location of the transmitting tags in terms of x, y, z Cartesian coordinates. Several pseudo-dynamic experiments have been performed by moving the tag antenna in various directions and the precision with which these slight movements could be resolved has been presented. Some more complex localisation experiments have also been undertaken, which involved the tracking of two transmitter tags simultaneously. Excellent 3D localisation accuracy in the range of 1-4 cm has been achieved in various experiment settings. A novel approach for achieving subcentimetre 3D localisation accuracy from UWB technology has been proposed and demonstrated successfully. In this approach, the phase centre information of the antennas in a UWB localisation system is utilised in position estimation to drastically improve the accuracy of the localisation measurements to millimetre levels. By using this technique, the average localisation error has been reduced by 86, 31, and 72% for the x-, y-, and z-axis coordinates, respectively.Published versio

    Stacked Patch Antenna With Dual-Polarization and Low Mutual Coupling for Massive MIMO

    Get PDF

    A Robust and Self-Paced BCI System Based on a Four Class SSVEP Paradigm: Algorithms and Protocols for a High-Transfer-Rate Direct Brain Communication

    Get PDF
    In this paper, we present, with particular focus on the adopted processing and identification chain and protocol-related solutions, a whole self-paced brain-computer interface system based on a 4-class steady-state visual evoked potentials (SSVEPs) paradigm. The proposed system incorporates an automated spatial filtering technique centred on the common spatial patterns (CSPs) method, an autoscaled and effective signal features extraction which is used for providing an unsupervised biofeedback, and a robust self-paced classifier based on the discriminant analysis theory. The adopted operating protocol is structured in a screening, training, and testing phase aimed at collecting user-specific information regarding best stimulation frequencies, optimal sources identification, and overall system processing chain calibration in only a few minutes. The system, validated on 11 healthy/pathologic subjects, has proven to be reliable in terms of achievable communication speed (up to 70 bit/min) and very robust to false positive identifications

    Low cost shaped beam synthesis for semi-smart base station antennas

    Get PDF

    Sparsity Independent Sub-Nyquist Rate Wideband Spectrum Sensing on Real-Time TV White Space

    Get PDF

    Compact and Low-Cost 3-D Printed Antennas Metalized Using Spray-Coating Technology for 5G mm-Wave Communication Systems

    Get PDF
    This letter presents a design of two compact, light, rigid, and low-cost three-dimensionally (3-D) printed millimeter-wave antennas for a fifth-generation (5G) communication system. The proposed antennas consist of a radiating slot that is surrounded by a rectangular cavity and corrugations, which boost the gain performance of the antennas. Furthermore, the proposed antennas are fabricated using 3-D printing technology, and they are metalized using novel, simple, and low-cost techniques, which utilize the commercial conducive spray-coating technology. The proposed antennas operate at a 28 GHz band, where the first design is fed by a waveguide to prove the performance, whereas the second design is fed by a microstrip line to demonstrate the ability to be integrated into a compact structure. Measurement results show a wide impedance bandwidth, which enables the proposed antenna design to be a strong candidate for 5G applications

    Open issues in mucopolysaccharidosis type I-hurler

    Get PDF
    Mucopolysaccharidosis I-Hurler (MPS I-H) is the most severe form of a metabolic genetic disease caused by mutations of IDUA gene encoding the lysosomal α-L-iduronidase enzyme. MPS I-H is a rare, life-threatening disease, evolving in multisystem morbidity including progressive neurological disease, upper airway obstruction, skeletal deformity and cardiomyopathy. Allogeneic hematopoietic stem cell transplantation (HSCT) is currently the gold standard for the treatment of MPS I-H in patients diagnosed and treated before 2-2.5 years of age, having a high rate of success. Beyond the child's age, other factors influence the probability of treatment success, including the selection of patients, of graft source and the donor type employed. Enzyme replacement therapy (ERT) with human recombinant laronidase has also been demonstrated to be effective in ameliorating the clinical conditions of pre-transplant MPS I-H patients and in improving HSCT outcome, by peri-transplant co-administration. Nevertheless the long-term clinical outcome even after successful HSCT varies considerably, with a persisting residual disease burden. Other strategies must then be considered to improve the outcome of these patients: one is to pursue early pre-symptomatic diagnosis through newborn screening and another one is the identification of novel treatments. In this perspective, even though newborn screening can be envisaged as a future attractive perspective, presently the best path to be pursued embraces an improved awareness of signs and symptoms of the disorder by primary care providers and pediatricians, in order for the patients' timely referral to a qualified reference center. Furthermore, sensitive new biochemical markers must be identified to better define the clinical severity of the disease at birth, to support clinical judgement during the follow-up and to compare the effects of the different therapies. A prolonged neuropsychological follow-up of post-transplant cognitive development of children and residual disease burden is needed. In this perspective, the reference center must guarantee a multidisciplinary follow-up with an expert team. Diagnostic and interventional protocols of reference centers should be standardized whenever possible to allow comparison of clinical data and evaluation of results. This review will focus on all these critical issues related to the management of MPS I-H
    corecore